goonserver/main.go

501 lines
13 KiB
Go

package main
import (
"bufio"
"encoding/binary"
"fmt"
"io"
"log"
"net"
"sync"
"time"
pb "gitea.boner.be/bdnugget/goonserver/actions"
"gitea.boner.be/bdnugget/goonserver/db"
"google.golang.org/protobuf/proto"
)
const (
port = ":6969" // Port to listen on
tickRate = 600 * time.Millisecond
protoVersion = 1
)
type Player struct {
sync.Mutex
ID int
X, Y int
Username string
LastSeenMsgTimestamp int64 // Track the last message timestamp this player has seen
}
var (
players = make(map[int]*Player)
actionQueue = make(map[int][]*pb.Action) // Queue to store actions for each player
playerConns = make(map[int]net.Conn) // Map to store player connections
mu sync.RWMutex // Add mutex for protecting shared maps
chatHistory = make([]*pb.ChatMessage, 0, 100)
chatMutex sync.RWMutex
)
func main() {
if err := db.InitDB("goonserver.db"); err != nil {
log.Fatalf("Failed to initialize database: %v", err)
}
ln, err := net.Listen("tcp", port)
if err != nil {
log.Fatalf("Failed to listen on port %s: %v", port, err)
}
defer ln.Close()
fmt.Printf("Server is listening on port %s\n", port)
// Create ticker for fixed game state updates
ticker := time.NewTicker(tickRate)
defer ticker.Stop()
// Start registration attempt cleanup goroutine
go func() {
ticker := time.NewTicker(time.Hour)
defer ticker.Stop()
for range ticker.C {
db.CleanupOldAttempts()
}
}()
// Handle incoming connections in a separate goroutine
go func() {
for {
conn, err := ln.Accept()
if err != nil {
log.Printf("Failed to accept connection: %v", err)
continue
}
go handleConnection(conn)
}
}()
// Main game loop
for range ticker.C {
processActions()
}
}
func handleConnection(conn net.Conn) {
defer func() {
conn.Close()
log.Printf("Connection closed and cleanup complete")
}()
// Get client IP
remoteAddr := conn.RemoteAddr().String()
ip, _, err := net.SplitHostPort(remoteAddr)
if err != nil {
log.Printf("Failed to parse remote address: %v", err)
return
}
// Read initial message for player ID
reader := bufio.NewReader(conn)
// Wait for authentication
lengthBuf := make([]byte, 4)
if _, err := io.ReadFull(reader, lengthBuf); err != nil {
log.Printf("Failed to read auth message length: %v", err)
return
}
messageLength := binary.BigEndian.Uint32(lengthBuf)
messageBuf := make([]byte, messageLength)
if _, err := io.ReadFull(reader, messageBuf); err != nil {
log.Printf("Failed to read auth message: %v", err)
return
}
batch := &pb.ActionBatch{}
if err := proto.Unmarshal(messageBuf, batch); err != nil {
log.Printf("Failed to unmarshal auth message: %v", err)
return
}
if len(batch.Actions) == 0 {
log.Printf("No auth action received")
return
}
action := batch.Actions[0]
var playerID int
var authErr error
if batch.ProtocolVersion == 0 {
response := &pb.ServerMessage{
AuthSuccess: false,
ErrorMessage: "Client using outdated protocol (pre-versioning)",
ProtocolVersion: protoVersion,
}
writeMessage(conn, response)
return
}
if batch.ProtocolVersion < protoVersion {
response := &pb.ServerMessage{
AuthSuccess: false,
ErrorMessage: fmt.Sprintf("Client protocol version too old (client: %d, required: %d)", batch.ProtocolVersion, protoVersion),
ProtocolVersion: protoVersion,
}
writeMessage(conn, response)
return
}
switch action.Type {
case pb.Action_REGISTER:
if err := db.CheckRegistrationLimit(ip); err != nil {
response := &pb.ServerMessage{
AuthSuccess: false,
ErrorMessage: err.Error(),
}
writeMessage(conn, response)
return
}
playerID, authErr = db.RegisterPlayer(action.Username, action.Password)
case pb.Action_LOGIN:
playerID, authErr = db.AuthenticatePlayer(action.Username, action.Password)
default:
log.Printf("Invalid initial action type: %v", action.Type)
return
}
// Send auth response
response := &pb.ServerMessage{
PlayerId: int32(playerID),
AuthSuccess: authErr == nil,
}
if authErr != nil {
response.ErrorMessage = authErr.Error()
if err := writeMessage(conn, response); err != nil {
log.Printf("Failed to send auth response: %v", err)
}
return
}
// Load last known position
x, y, err := db.LoadPlayerState(playerID)
if err != nil {
log.Printf("Error loading state for player %d: %v", playerID, err)
x, y = 5, 5 // Default position
}
username, err := db.GetUsername(playerID)
if err != nil {
log.Printf("Error getting username for player %d: %v", playerID, err)
return
}
log.Printf("Player %d (%s) authenticated successfully, checking for existing session", playerID, username)
// Check for existing session and force disconnect if needed
mu.Lock()
existingPlayer, alreadyLoggedIn := players[playerID]
if alreadyLoggedIn {
log.Printf("Player %d (%s) is already logged in, forcing disconnect of old session", playerID, username)
// An existing session is found - clean it up
if oldConn, exists := playerConns[playerID]; exists {
// Try to close the old connection
oldConn.Close()
delete(playerConns, playerID)
}
// Keep the player object but update its connection
existingPlayer.X = x
existingPlayer.Y = y
playerConns[playerID] = conn
mu.Unlock()
} else {
// Create a new player
player := &Player{
ID: playerID,
X: x,
Y: y,
Username: username,
LastSeenMsgTimestamp: 0, // Initialize to 0 to receive all messages initially
}
players[playerID] = player
playerConns[playerID] = conn
mu.Unlock()
existingPlayer = player
// Announce connection
addSystemMessage(fmt.Sprintf("%s connected", username))
}
// Ensure player state is saved on any kind of disconnect
defer func() {
if p, exists := players[playerID]; exists {
if err := db.SavePlayerState(playerID, p.X, p.Y); err != nil {
log.Printf("Error saving state for player %d: %v", playerID, err)
}
}
addSystemMessage(fmt.Sprintf("%s disconnected", username))
mu.Lock()
delete(players, playerID)
delete(playerConns, playerID)
delete(actionQueue, playerID)
mu.Unlock()
log.Printf("Player %d (%s) disconnected", playerID, username)
}()
// Send initial state with correct position
response = &pb.ServerMessage{
PlayerId: int32(playerID),
AuthSuccess: true,
Players: []*pb.PlayerState{{
PlayerId: int32(playerID),
X: int32(x),
Y: int32(y),
Username: username,
}},
ProtocolVersion: protoVersion,
}
// Send player ID to client
if err := writeMessage(conn, response); err != nil {
log.Printf("Failed to send player ID: %v", err)
return
}
log.Printf("Player %d (%s) connected successfully", playerID, username)
// Listen for incoming actions from this player
for {
// Read message length
lengthBuf := make([]byte, 4)
if _, err := io.ReadFull(reader, lengthBuf); err != nil {
if err == io.EOF {
log.Printf("Player %d disconnected gracefully", playerID)
} else {
log.Printf("Error reading message length from player %d: %v", playerID, err)
}
return
}
messageLength := binary.BigEndian.Uint32(lengthBuf)
// Read message body
messageBuf := make([]byte, messageLength)
if _, err := io.ReadFull(reader, messageBuf); err != nil {
log.Printf("Error reading message from player %d: %v", playerID, err)
return
}
batch := &pb.ActionBatch{}
if err := proto.Unmarshal(messageBuf, batch); err != nil {
log.Printf("Failed to unmarshal action batch for player %d: %v", playerID, err)
continue
}
// Update the last seen message timestamp
if batch.LastSeenMessageTimestamp > 0 {
existingPlayer.LastSeenMsgTimestamp = batch.LastSeenMessageTimestamp
}
// Queue the actions for processing
if batch.PlayerId == int32(playerID) {
for _, action := range batch.Actions {
if action.Type == pb.Action_DISCONNECT {
log.Printf("Player %d requested disconnect", playerID)
return
}
}
mu.Lock()
actionQueue[playerID] = append(actionQueue[playerID], batch.Actions...)
mu.Unlock()
}
}
}
func addChatMessage(playerID int32, content string) {
player, exists := players[int(playerID)]
if !exists {
return
}
chatMutex.Lock()
defer chatMutex.Unlock()
msg := &pb.ChatMessage{
PlayerId: playerID,
Username: player.Username,
Content: content,
Timestamp: time.Now().UnixNano(),
}
if len(chatHistory) >= 100 {
chatHistory = chatHistory[1:]
}
chatHistory = append(chatHistory, msg)
}
func addSystemMessage(content string) {
chatMutex.Lock()
defer chatMutex.Unlock()
msg := &pb.ChatMessage{
PlayerId: 0, // System messages use ID 0
Username: "System",
Content: content,
Timestamp: time.Now().UnixNano(),
}
if len(chatHistory) >= 100 {
chatHistory = chatHistory[1:]
}
chatHistory = append(chatHistory, msg)
}
func processActions() {
mu.Lock()
// Make a list of players to process first, to avoid lock contention
activePlayers := make(map[int]*Player)
for id, p := range players {
activePlayers[id] = p
}
activeConns := make(map[int]net.Conn)
for id, conn := range playerConns {
activeConns[id] = conn
}
activeQueues := make(map[int][]*pb.Action)
for id, actions := range actionQueue {
if len(actions) > 0 {
activeQueues[id] = actions
actionQueue[id] = nil // Clear the queue early to avoid double processing
}
}
mu.Unlock()
// Process actions without holding the global lock
for playerID, actions := range activeQueues {
player, exists := activePlayers[playerID]
if !exists {
continue
}
player.Lock()
for _, action := range actions {
switch action.Type {
case pb.Action_MOVE:
player.X = int(action.X)
player.Y = int(action.Y)
fmt.Printf("Player %d moved to (%d, %d)\n", playerID, player.X, player.Y)
case pb.Action_CHAT:
addChatMessage(int32(playerID), action.ChatMessage)
fmt.Printf("Player %d says: %s\n", playerID, action.ChatMessage)
}
}
player.Unlock()
}
// Prepare current game state
currentTick := time.Now().UnixNano() / int64(tickRate)
// Get recent messages for new connections
chatMutex.RLock()
recentMessages := chatHistory[max(0, len(chatHistory)-5):] // Get last 5 for new connections
chatMutex.RUnlock()
// To avoid holding locks too long, prepare player states first
playerStates := make([]*pb.PlayerState, 0, len(activePlayers))
for id, p := range activePlayers {
p.Lock()
playerStates = append(playerStates, &pb.PlayerState{
PlayerId: int32(id),
X: int32(p.X),
Y: int32(p.Y),
Username: p.Username,
})
p.Unlock()
}
// Now send updates to each player
for playerID, conn := range activeConns {
player, exists := activePlayers[playerID]
if !exists {
continue
}
state := &pb.ServerMessage{
CurrentTick: currentTick,
Players: playerStates,
}
// Add chat messages - only send those the player hasn't seen
player.Lock()
lastSeen := player.LastSeenMsgTimestamp
player.Unlock()
chatMutex.RLock()
var newMessages []*pb.ChatMessage
// For new connections, send the 5 most recent messages
if lastSeen == 0 && len(recentMessages) > 0 {
newMessages = recentMessages
if len(newMessages) > 0 {
// Update the player's timestamp to the latest message
player.Lock()
player.LastSeenMsgTimestamp = newMessages[len(newMessages)-1].Timestamp
player.Unlock()
}
} else {
// For existing connections, only send new messages
for _, msg := range chatHistory {
if msg.Timestamp > lastSeen {
newMessages = append(newMessages, msg)
}
}
// Update the player's timestamp if we sent them new messages
if len(newMessages) > 0 {
player.Lock()
player.LastSeenMsgTimestamp = newMessages[len(newMessages)-1].Timestamp
player.Unlock()
}
}
state.ChatMessages = newMessages
chatMutex.RUnlock()
// Log the number of messages we're sending
if len(newMessages) > 0 {
log.Printf("Sending %d new messages to player %d", len(newMessages), playerID)
}
// Send the state to the player - do this without holding any locks
if err := writeMessage(conn, state); err != nil {
log.Printf("Failed to send update to player %d: %v", playerID, err)
// Handle connection errors by removing the player
mu.Lock()
delete(players, playerID)
delete(playerConns, playerID)
delete(actionQueue, playerID)
mu.Unlock()
}
}
}
// Helper function to write length-prefixed messages
func writeMessage(conn net.Conn, msg proto.Message) error {
data, err := proto.Marshal(msg)
if err != nil {
return err
}
// Write length prefix
lengthBuf := make([]byte, 4)
binary.BigEndian.PutUint32(lengthBuf, uint32(len(data)))
if _, err := conn.Write(lengthBuf); err != nil {
return err
}
// Write message body
_, err = conn.Write(data)
return err
}