goonscape/main.go
2024-10-01 11:56:42 +02:00

379 lines
9.8 KiB
Go

package main
import (
"fmt"
"math"
rl "github.com/gen2brain/raylib-go/raylib"
)
const (
MapWidth = 100
MapHeight = 100
TileSize = 32
TileHeight = 2.0
)
var (
cameraDistance = float32(20.0)
cameraYaw = float32(145.0)
cameraPitch = float32(90.0)
)
type Tile struct {
X, Y int
Height float32
Walkable bool
}
type Player struct {
PosActual rl.Vector3
PosTile Tile
TargetPath []Tile
Speed float32
}
// Initialize the map with some height data
func InitMap() [][]Tile {
mapGrid := make([][]Tile, MapWidth)
for x := 0; x < MapWidth; x++ {
mapGrid[x] = make([]Tile, MapHeight)
for y := 0; y < MapHeight; y++ {
mapGrid[x][y] = Tile{
X: x,
Y: y,
Height: 1.0 + float32(x%5), //float32((x + y) % 10), // Example height
Walkable: true, // Set to false for obstacles
}
}
}
return mapGrid
}
func DrawMap(mapGrid [][]Tile) {
for x := 0; x < MapWidth; x++ {
for y := 0; y < MapHeight; y++ {
tile := mapGrid[x][y]
// Interpolate height between adjacent tiles for a smoother landscape
height := tile.Height
if x > 0 {
height += mapGrid[x-1][y].Height
}
if y > 0 {
height += mapGrid[x][y-1].Height
}
if x > 0 && y > 0 {
height += mapGrid[x-1][y-1].Height
}
height /= 4.0
// Draw each tile as a 3D cube based on its height
tilePos := rl.Vector3{
X: float32(x * TileSize), // X-axis for horizontal position
Y: height * TileHeight, // Y-axis for height (Z in 3D is Y here)
Z: float32(y * TileSize), // Z-axis for depth (Y in 3D is Z here)
}
color := rl.Color{R: uint8(height * 25), G: 100, B: 100, A: 64}
rl.DrawCube(tilePos, TileSize, TileHeight, TileSize, color) // Draw a cube representing the tile
}
}
}
func DrawPlayer(player Player, mapGrid [][]Tile) {
// Get current tile height
currentTile := mapGrid[player.PosTile.X][player.PosTile.Y]
// Draw player cube with height from the map
playerPos := rl.Vector3{
X: float32(player.PosTile.X * TileSize),
Y: currentTile.Height * TileHeight,
Z: float32(player.PosTile.Y * TileSize),
}
rl.DrawCube(playerPos, 16, 16, 16, rl.Green) // Draw player cube
}
func GetTileAtMouse(mapGrid [][]Tile, camera *rl.Camera3D) (Tile, bool) {
if !rl.IsMouseButtonPressed(rl.MouseLeftButton) {
return Tile{}, false
}
mouse := rl.GetMousePosition()
// Unproject mouse coordinates to 3D ray
var ray rl.Ray = rl.GetMouseRay(mouse, *camera)
// Calculate the distance from the camera to the ray's intersection with the ground plane (Y=0)
dist := -ray.Position.Y / ray.Direction.Y
// Calculate the intersection point
intersection := rl.NewVector3(
ray.Position.X+ray.Direction.X*dist,
ray.Position.Y+ray.Direction.Y*dist,
ray.Position.Z+ray.Direction.Z*dist,
)
// Convert the intersection point to tile coordinates
tileX := int(intersection.X / float32(TileSize))
tileY := int(intersection.Z / float32(TileSize))
if tileX >= 0 && tileX < MapWidth && tileY >= 0 && tileY < MapHeight {
fmt.Println("Clicked:", tileX, tileY)
return mapGrid[tileX][tileY], true
}
return Tile{}, false
}
func UpdatePlayer(player *Player, deltaTime float32, mapGrid [][]Tile, camera *rl.Camera) {
if len(player.TargetPath) > 0 {
targetTile := player.TargetPath[0]
// Calculate the direction vector to the target
direction := rl.Vector3{
X: float32(targetTile.X*TileSize) - player.PosActual.X,
Y: float32(targetTile.Y*TileSize) - player.PosActual.Y,
}
// Normalize the direction vector to get smooth movement
dist := float32(math.Sqrt(float64(direction.X*direction.X + direction.Y*direction.Y)))
if dist > 0 {
direction.X /= dist
direction.Y /= dist
}
// Move towards the target
newPosX := player.PosActual.X + direction.X*player.Speed*deltaTime
newPosY := player.PosActual.Y + direction.Y*player.Speed*deltaTime
// Check if the player is moving into a non-walkable tile
if !mapGrid[int(newPosX)/TileSize][int(newPosY)/TileSize].Walkable {
return
}
// Update player's position
player.PosActual.X = newPosX
player.PosActual.Y = newPosY
// Check if the player reached the target tile
if dist < 1.0 {
player.PosActual.X = float32(targetTile.X * TileSize)
player.PosActual.Y = float32(targetTile.Y * TileSize)
player.PosTile = targetTile // Update the player's tile position
player.TargetPath = player.TargetPath[1:] // Move to the next tile in the path
}
}
}
func HandleInput(player *Player, mapGrid [][]Tile, camera *rl.Camera) {
clickedTile, clicked := GetTileAtMouse(mapGrid, camera)
if clicked {
path := FindPath(mapGrid, mapGrid[player.PosTile.X][player.PosTile.Y], clickedTile)
if path != nil {
// Exclude the first tile (current position)
if len(path) > 1 {
player.TargetPath = path[1:]
}
}
}
}
func main() {
rl.InitWindow(800, 600, "RuneScape-like Game")
defer rl.CloseWindow()
frameCnt := 0
mapGrid := InitMap()
player := Player{
PosTile: Tile{X: 10, Y: 10},
PosActual: rl.Vector3{X: float32(10 * TileSize), Y: float32(10 * TileSize), Z: float32(mapGrid[10][10].Height /* * TileHeight */)},
Speed: 100.0, // pixels per second
}
// Initialize 3D camera
camera := rl.Camera3D{
Position: rl.NewVector3(player.PosActual.X+cameraDistance, player.PosActual.Y+cameraDistance, player.PosActual.Z+cameraDistance),
Target: player.PosActual, // The point the camera looks at (player)
Up: rl.NewVector3(0, 1, 0), // Camera up vector (y-axis is up)
Fovy: 45.0, // Field of view
Projection: rl.CameraPerspective, // Perspective camera mode
}
camera.Target = player.PosActual
rl.SetTargetFPS(60)
for !rl.WindowShouldClose() {
deltaTime := rl.GetFrameTime()
frameCnt++
frameCnt %= 60
// Update camera based on mouse wheel
wheelMove := rl.GetMouseWheelMove()
if wheelMove != 0 {
cameraDistance += -wheelMove * 5
if cameraDistance < 1 {
cameraDistance = 1
} else if cameraDistance > 100 {
cameraDistance = 100
}
}
// Update camera based on arrow keys (camera orbits player)
if rl.IsKeyDown(rl.KeyRight) {
cameraYaw -= 60 * deltaTime // Rotate right
}
if rl.IsKeyDown(rl.KeyLeft) {
cameraYaw += 60 * deltaTime // Rotate left
}
if rl.IsKeyDown(rl.KeyUp) {
cameraPitch += 60 * deltaTime // Tilt up
}
if rl.IsKeyDown(rl.KeyDown) {
cameraPitch -= 60 * deltaTime // Tilt down
}
// Constrain camera pitch to avoid flipping
if cameraPitch > 85.0 {
cameraPitch = 85.0
} else if cameraPitch < -10.0 {
cameraPitch = -10.0
}
HandleInput(&player, mapGrid, &camera)
UpdatePlayer(&player, deltaTime, mapGrid, &camera)
camera.Target = player.PosActual
// Convert spherical coordinates to cartesian to calculate the camera's position
camera.Position.X = player.PosActual.X + cameraDistance*float32(math.Cos(float64(cameraPitch)*math.Pi/180.0))*float32(math.Sin(float64(cameraYaw)*math.Pi/180.0))
camera.Position.Y = player.PosActual.Y + cameraDistance*float32(math.Sin(float64(cameraPitch)*math.Pi/180.0))
camera.Position.Z = player.PosActual.Z + cameraDistance*float32(math.Cos(float64(cameraPitch)*math.Pi/180.0))*float32(math.Cos(float64(cameraYaw)*math.Pi/180.0))
// Begin rendering
rl.BeginDrawing()
rl.ClearBackground(rl.RayWhite)
rl.BeginMode3D(camera)
// Draw map and player
DrawMap(mapGrid)
DrawPlayer(player, mapGrid)
rl.EndMode3D()
rl.EndDrawing()
if frameCnt == 0 {
fmt.Printf("Player Pos: %v, Camera Pos: %v\n", player.PosActual, camera.Position)
}
}
}
// pathfinding
type Node struct {
Tile Tile
Parent *Node
G, H, F float32
}
func FindPath(mapGrid [][]Tile, start, end Tile) []Tile {
openList := []*Node{}
closedList := make(map[[2]int]bool)
startNode := &Node{Tile: start, G: 0, H: heuristic(start, end)}
startNode.F = startNode.G + startNode.H
openList = append(openList, startNode)
for len(openList) > 0 {
// Find node with lowest F
current := openList[0]
currentIndex := 0
for i, node := range openList {
if node.F < current.F {
current = node
currentIndex = i
}
}
// Move current to closed list
openList = append(openList[:currentIndex], openList[currentIndex+1:]...)
closedList[[2]int{current.Tile.X, current.Tile.Y}] = true
// Check if reached the end
if current.Tile.X == end.X && current.Tile.Y == end.Y {
path := []Tile{}
node := current
for node != nil {
path = append([]Tile{node.Tile}, path...)
node = node.Parent
}
fmt.Printf("Path found: %v\n", path)
return path
}
// Generate neighbors
neighbors := GetNeighbors(mapGrid, current.Tile)
for _, neighbor := range neighbors {
if !neighbor.Walkable || closedList[[2]int{neighbor.X, neighbor.Y}] {
continue
}
tentativeG := current.G + distance(current.Tile, neighbor)
inOpen := false
var existingNode *Node
for _, node := range openList {
if node.Tile.X == neighbor.X && node.Tile.Y == neighbor.Y {
existingNode = node
inOpen = true
break
}
}
if !inOpen || tentativeG < existingNode.G {
newNode := &Node{
Tile: neighbor,
Parent: current,
G: tentativeG,
H: heuristic(neighbor, end),
}
newNode.F = newNode.G + newNode.H
if !inOpen {
openList = append(openList, newNode)
}
}
}
}
// No path found
fmt.Println("No path found")
return nil
}
func heuristic(a, b Tile) float32 {
return float32(abs(a.X-b.X) + abs(a.Y-b.Y))
}
func distance(a, b Tile) float32 {
_ = a
_ = b
return 1.0 //uniform cost for now
}
func GetNeighbors(mapGrid [][]Tile, tile Tile) []Tile {
directions := [][2]int{
{1, 0}, {-1, 0}, {0, 1}, {0, -1},
{1, 1}, {-1, -1}, {1, -1}, {-1, 1},
}
neighbors := []Tile{}
for _, dir := range directions {
nx, ny := tile.X+dir[0], tile.Y+dir[1]
if nx >= 0 && nx < MapWidth && ny >= 0 && ny < MapHeight {
neighbors = append(neighbors, mapGrid[nx][ny])
}
}
return neighbors
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}